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I. GENERAL INTRODUCTION 

During the period of thid grant, the general theory of globally unstable modes, i.e. temporally growing 

or self-excited modes with a two- or three-dimensional modal structure on a spatially evolving mean 

flow have been further developed. An account of the most recent developments is given in section II 

which is a reproduction of an invited lecture at the international colloquium on jets, wakes and shear 

layers held in April 1994 at CSIRO, Highett, Australia. 

In this spirit, an investigation of the breakdown of a delta vortex has been undertaken. In a first step an 

experimental survey of vortex breakdown on a delta wing with 70° sweep has been carried out in the 

low-speed wind tunnel at UCLA. This survey, described in section III, has identified the conditions of 

breakdown as a function of angle of attack and the deflection of a trailing edge flap by flow 

visualization. Due to the departure of the P.I. from UCLA, this initial experimental investigation came 

to an end in mid 1993 and further experiments, in particular with active control, were rendered 

impossible during the report period. 

On the theoretical side, work has begun on the analytical description of the instability that leads to 

vortex breakdown. As usual, the first step in such an analysis is the investigation of the linear stability 

of local profiles which is needed for the subsequent global mode analysis. During the report period, 

such local calculations have been carried out on mean flows typical for a breakdown structure. The first 

new result, reported in section IV, is the discovery of absolute instability in the breakdown region 

which bodes well for a future global mode analysis. As discussed in section IV, the stability analysis 

has been carried out on an assumed mean flow corresponding to breakdown. Therefore we cannot at 

this point explain why the breakdown structure forms in the first place, but we are hopeful that this 

might become possible as the investigation progresses. 

The principal investigator would like to express his sincere thanks to AFOSR for supporting this 

research and to his collaborators Dr. Fu Wei Jun and Dr. Pesenson for providing sections III and IV of 

this report. 



II. MODELLING OF SELF-EXCITED WAKE 
OSCILLATIONS BY AMPLITUDE EQUATIONS 

Peter A. Monkewitz 
Dept. of Mechanical Engineering 
Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland 

To appear in Experimental Thermal and Fluid Science, 1995 

ABSTRACT 

The purpose of this overview is to show the utility of simple amplitude equations for the 
modelling of various vortex shedding phenomena. After a review of global modes which leads 
to the physical concept of local self-excited oscillators that act as "generators" of Kärmän 
vortices in the near wake, the characterization of the vortex street by a single Stuart-Landau 
oscillator is discussed. The success beyond expectation of this model as well as the problems 
associated with it are documented. Among them, we focus on the neglect of spatial structure 
in the simple temporal Stuart-Landau model. The role of spatial structure in the streamwise 
direction is highlighted by a short discussion of the effect of feedback control, while in the last 
part of the paper the model is extended to include the spanwise structure of vortex shedding, in 
particular the effect of the cylinder ends. 

1. INTRODUCTION - A BRIEF REVIEW OF GLOBAL MODE 
CONCEPTS 

Research on vortex shedding from bluff bodies has, over the last decade, received new 
impulses from the theory of hydrodynamic instability. The concept of local absolute and 
convective instability in particular, pioneered by Briggs [1] in the context of plasma 
instabilities, has proved useful in shear flows. The initial ideas about the possible connection 
between local absolute instability [2-4] and self-excited or time-amplified global oscillations 
of the entire near-wake have been refined in numerous publications (see for instance [5] ). 
These theoretical ideas have gained importance due to the experimental discovery of Mathis et 
al. [6] and Provansal et al. [7] that Kärmän vortex shedding is indeed a limit-cycle oscillation 
of the near-wake, resulting from a time-amplified global instability. They showed that the 
wake dynamics could be described by a single Stuart-Landau (S-L) equation [8] by measuring 
all coefficients of the S-L equation for a range of Reynolds numbers near the onset of Kärmän 
shedding. Since then, experiments of this type have been repeated and refined by Sreenivasan 
et al. [9], Strykowski & Sreenivasan [10], Schumm [11] and Schumm et al. [5] for the wake 
and by Raghu & Monkewitz [12] for a heated jet. 

When considering the stability properties of a two-dimensional basic flow which evolves in 
the streamwise direction, the so-called locally parallel approach is commonly used. For this, 
one takes the local mean velocity profile at a fixed streamwise location and considers the 
stability of a hypothetical parallel flow of infinite streamwise extent with a velocity profile 
equal to the selected local profile. Obviously the selection of streamwise location for the 
locally parallel analysis is arbitrary and hence the connection between the local analyses and 



the "true" instability of the nonparallel flow remains unclear. In the context of linear stability 
this true instability is referred to as "global mode". It is simply a time-harmonic solution 
(allowing for temporal growth or decay) of the governing equations, linearized around a two- 
dimensional nonparallel basic wake flow, say U0(x,y). The coordinate x is thereby pointing in 
the downstream direction and the two-dimensional biuff body producing the wake is aligned 
with the coordinate z. Hence, the total velocity field up to linear order in the perturbation is 

given by 

U(x,y,z,t) = U0(x,y) + ü(x,y,z)exp(-icoGt) + 0(|ü|2) , (1) 

where <DG is the complex global frequency. Depending on the sign of the imaginary part of 
coG, the global mode is stable [Im(coG)<0] or unstable [Im(coG)>0]. Here and in the following 
(except in section 4 where an additional rescaling is introduced) all quantities are non- 
dimensional with D*, the cylinder diameter or characteristic thickness of the bluff body, and 
the diffusion time D*2/v*, where the star indicates a dimensional quantity. 

Under the assumption that a typical instability wave length X is much shorter than the distance 
A over which the basic flow changes significantly, i.e that z=X/A. «1 (in the context of bluff- 
body wakes, A may be defined on the basis of the centerline velocity Uc as [d(Uc/Uco )/dx]"1), 
and that there is no long-range pressure feedback such as in edge-tone phenomena, a 
connection between local and global stability characteristics can be established by asymptotic 
WKBJ methods. This connection has been analysed by Huerre & Monkewitz [13], Chomaz, 
Huerre & Redekopp [14], Hunt & Crighton [15], Soward [16], Monkewitz, Huerre & Chomaz 
[17] and LeDizes et al. [18, 19] who have shown that local absolute instability over some 
streamwise interval of the nonparallel flow is necessary for global instability. The details of 
the linear analysis are rather involved but stand on a sound mathematical basis. The weakly 
nonlinear extension of the global mode analysis, on the other hand, has so far only been 
possible under very restrictive assumptions [18, 20] and is still under investigation. The 
essence of the results can be summarized (see also Albarede & Monkewitz [21] ) in the 
following (over)simplified form: allowing for weak spanwise variations, any suitably scaled 
disturbance quantity A can be represented as 

A = A(T,Z) B(4) C(y;xt) exp[icoGt - ik*(x - x1)] + c.c.   , (2) 

where c.c. stands for the complex conjugate and x* is a turning point (point of breakdown) of 
the WKBJ formulation, assuming here that there is only one which acts as a "generator of 
waves" with wave number k* for the entire flow. This wave-maker region extends over a flow 
interval |^|<0(1), where £ = s^x-x*) with a= 1/2 for flows dominated by a maximum of the 
absolute growth rate within the flow domain and a=l/3 for flows dominated by absolute 
instability at a streamwise flow boundary [17]. The function C in (2) represents the cross- 
stream structure of the disturbance which is frozen at xl and is nothing but the eigenfunction 
of the conventional local parallel stability problem. B represents the linear global mode shape 
or the envelope of the carrier wave exp[icoGt - ikl(x - x*)] which is assumed to be independent 
of the spanwise location z. As shown by Huerre & Monkewitz [13] and Monkewitz et al. 
[17], the envelope B of the most unstable global mode is established on a time scale T=S

2
<* t, 

starting from an infinitesimal initial disturbance. The overall amplitude A finally describes 
the weakly nonlinear evolution of the global mode on the time scale T=s2ß t, which is slower 



than x   (ß>a), as well as the weak coupling between "oscillators" at different spanwise 
locations which leads to slow amplitude variations on the scale Z=sß z. 

Since we can restrict ourselves, as shown by Mathis et al. [6] and Provansal et al. [7], to the 
case of a super-critical Hopf bifurcation (see e.g. [8]), i.e. to the case when a linearly unstable 
global mode evolves continuously into limit-cycle oscillations, the saturation time scale can 
always be made slower than the time for the establishment of the linear global mode shape. It 
is therefore meaningful to consider the evolution of an initial impulse in a nonparallel flow as 
a "two-step" process: the first step consists of the impulse evolving into the most unstable 
linear global mode by the process of selective amplification, assuming that the "critical" mode 
grows much faster than all the "higher" global modes. The second step involves a period, 
during which the critical linear global mode grows exponentially as a whole at the rate 
Im(coG), followed by nonlinear saturation and diffusion in the Z-direction which is fully 
described by the overall amplitude A(T,Z) governed by the Ginzburg-Landau (G-L) equation. 

aTA = K+iGjjA + [h-^i^ZzA " [/r+i'i]lAl2A    • (3) 

This equation reduces to the S-L equation when A is independent of Z which is the topic of 
the next section. The governing equation for the linear mode shape B and its implications will 
be discussed in section 3 and the mechanism leading to spanwise variations of A is tackled in 
section 4. At this point again, it has to be made absolutely clear that equation (3) in particular 
can so far only be derived in a rational manner under extremely restrictive conditions and can 
therefore only be considered as a MODEL EQUATION for the practical applications to 

follow! 

2. THE UNEXPECTED SUCCESS OF THE STUART-LANDAU MODEL 
FOR THE DESCRIPTION OF VORTEX SHEDDING TRANSIENTS 

For strictly two-dimensional vortex shedding, equation (3) reduces to the well known S-L 
equation which is written below in terms of the modulus |A|(T) and phase O(T) of the 
complex amplitude A=|A| exp(iO): 

|A|-ldT|A| = ar - /r|Ap = <yr[l - (|A| / |A|sat)2] , (4a) 

dT0) = 0i - h\Ap = oj - («Vi / /r)(|A| /1A|sat)2 , (4b) 

lAlsat = Mlfl = {[dar/dR](Rcr) / lx)
m [R-Rcr]

1/2 . (4c) 

This form of the equation, with lA^d^A! and dT<D representing the instantaneous growth rate 
and frequency respectively, pertains to a supercritical Hopf bifurcation, i.e. to a situation with 
/r >0 where the nonlinearity is amplitude-limiting. Furthermore it is clear that the introduction 
of the saturation or limit-cycle amplitude |A|sat is only permissible in an unstable situation 
ür >0. It is repeated here that these equations are only meaningful if they describe the 
evolution of a global mode as a whole, i.e. if the linear growth rate ar, the linear frequency a, 
and the nonlinear frequency correction (ar/j / /r) are independent of the measuring location. lT 

on the other hand does depend on the choice of measuring location which amounts to a 
particular normalization of the streamwise global mode shape B. 



Throughout the paper the coefficients of (4) will be assumed to depend exclusively on the 
Reynolds number RMU+JDVv*, which plays the role of bifurcation parameter. As discussed 
by Stuart [8], the balance of terms in (4a) requires that the linear growth rate <rr be small of 
order 0(|A|2). Hence the "distance from criticality" (R-Rgr) has to be of order 0(|A|2), where 
Rcr is defined by ar(Rcr)=0, and it is consistent to approximate the coefficients in (4) by 

ar = [R-Rcr][doydR](Rcr) + OOR-RJ2) , 

a; = ai(Rcr) + [R-RcrJtdoydRKRcr) + OOR-RJ2) , (5) 

[Zr+i/i] = [/r-H/i](Rcr) + 0(|R-Rcr|) . 

To illustrate the success of this model in the wake, we discuss the case of a circular cylinder 
(L/D=50) with base bleed, shown on fig.la. To rapidly shut off or start the base bleed, the 
supply lines on both ends were fitted with solenoid valves. Figure lb shows the critical 
Reynolds number as a function of base bleed coefficient, defined by cb=Q*/(L* D* U*«,) 
with Q the discharge through the slot. At high R, the critical bleed coefficient asymptotes at 
cb=0.12 which is consistent with Monkewitz and Nguyen's [22] result that typical inviscid 
wake profiles become convectively unstable at a bleed coefficient of 9% . At the low-R end, 
the wake can be destabilized down to R=27 which is consistent with the observations of 
Berger [23] and Nishioka & Sato [24], that no stable vortex streets can be excited below 
Reynolds numbers of around 20 to 25. We must conclude that around R=27 the suction has to 
be so strong that the global mode damping due to nonparallel effects overcomes the 
destabilizing effect of increased reverse flow. The sudden interruption of base bleed or base 
suction are now used to produce transients. This is first shown on the smoke wire 
visualizations of figure 2, where the first frame shows the initial total suppression of vortex 
shedding with a bleed coefficient of 0.10 at Re=68. 

The coefficients of the SL-equation are deduced by fitting the relations 4a and 4b to the 
instantaneous growth rate and frequency that are obtained by a complex demodulation of the 
measured velocity trace during transients as described for instance by Raghu & Monkewitz 
[12] and Schumm et al. [5]. A typical transient is shown on fig. 3 and the resulting linear 
growth rate, frequency and Landau constant are displayed on fig. 4. Numerically we find 

Rcr = 46.7 ±0.3 , (6a) 

ar = [0.21 ± 0.005] (R-Rcr) , (6b) 

a; = [33.6 ± 0.3] + [0.64 ± 0.02] (R-R^) ,                                                                    (6c) 

. /j//r = -[2.90 ±0.45] . (6d) 

First we note that the slope of the growth rate (6b) is somewhat higher than the value of 0.20 
published by Provansal et al. [7] and Strykowski & Sreenivasan [10]. This slight increase 
appears due to the fact that we have consistently extrapolated growth rates to zero amplitudes. 
We also note the excellent agreement between the data obtained with base bleed and with 
shedding suppression by cylinder oscillations [5]. The Landau constant (6d) also is consistent 
with the value of-3, published by Sreenivasan et al. [9]. 



With equ. (4b), the results (6a) to (6d) can also be combined to yield the saturation frequency. 
After division by (2TTR) we obtain the Roshko relation for the Strouhal number S 

S = f*D*/U*oo = -3.94/R + 0.199 . (7) 

The numerical coefficients can be compared to the values given by Williamson [25] after his 
equation (6). We find that our values are closer to his three-term than his two-term fit. Near 
the bifurcation, where the S-L equation is valid, (7) is indistinguishable from Williamson's 
fits, while it falls only slightly below his universal curve at R=100. This supports our 
observation that the transients are not contaminated, by three-dimensional effects. 

The first comment pertains to the range of R over which the measured coefficients follow the 
leading order relation (5). As already said, the S-L equation can only be justified very close to 
Rcr and it is an open question why it still applies at 1.3Rcr and beyond. This is even more 
surprising in view of the discussion of "higher" global modes in section 3 and may be an 
accident altogether. 

Next, the question must be asked whether it is legitimate to characterize the global mode 
amplitude by a single measurement at a fixed location. This has been addressed by Goujon- 
Durand et al. [26] who started from the idea that the most obvious way of characterizing the 
global mode should be by its maximum amplitude with respect to x. To their surprise they 
found that the maximum saturation amplitude |A|sat|B|max scaled like (R-Rcr) to Has first and 
not the one-half power as suggested by (4c). Investigating further, they found that the location 
xmax where |B| has its maximum scaled like (R-Rcr)"

1/2 such that only |A|satj |B|dx scales 
like the expected (R-Rcr)

1/2 over the range R=Rcr to 1.84 R^ . However, this finding does 
not jeopardize the measurements of the linear growth rates, linear frequencies and nonlinear 
frequency correction which have been found independent of measuring location by Schumm 
[11] (see also [5, 27] ). Furthermore, the scaling of the amplitude with (R-Rcr)

1/2 found by 
Mathis et al. [6], Provansal et al. [7] and Schumm et al. [5] may be explained by the fact that 
in all cases the measurement location was situated in the "tail" of the global mode, typically at 
10D, where the scaling of |A|sat|B|(x=10D) is quite close to (R-Rcr)

1/2 (see also fig. 4 of 
Ohle & Eckelmann [28]). 

Finally one may ask whether it is not possible to compute at least the coefficients (6a) and 
(6b) from local linear stability properties of the wake following to the formalism of 
Monkewitz et al. [17]. This has been attempted by S. LeDizes and this author with the 
following result: the local absolute growth rate, shown on fig. 6, associated with velocity 
profiles computed by Morzynski & Thiele [29] shows a weak maximum within the flow 
domain but virtually no reduction towards the base of the cylinder. Therefore, the cylinder 
wake does not fall into the category of flows dominated by a maximum of absolute growth 
rate at a boundary nor the one dominated by a maximum within the flow. Such a situation is 
not amenable to the semi-analytic treatment of Monkewitz et al. [17] and it does not seem 
possible to progress beyond qualitative statements, as given in Monkewitz [30] for instance. 



3. THE MODELLING OF FEEDBACK CONTROL 
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4. VORTEX SHEDDING FROM FINITE-LENGTH CYLINDERS - 

PHASE DYNAMICS 

Pinally, we return to the W G-L equation, (3) for ^^£g££££ 
diffusive coupling of »oscillators» along he spam  Ttaequ*,onhas y ^ 

a "Taylor hypothesis", i.e. by ^^^^^ ^ 9b of Williamson [25] ). 
constant streamwise convection speed of the Karman^vortices Ung ^^ 
Hence the visualization of the vortex pattern in the X^Pla^ t^acer (smoke) delineates a 
recording" of the source dynamics and each vortex marked by the tracer (smokej 
line of constant phase in the (-x/Uc)-z plane. 



The main result of Albarede & Monkewitz [21] is the elucidation of the role of end conditions 
in determining the angle of oblique shedding. In particular, they have shown that parallel 
shedding is induced by an increase of the degree of instability towards the ends, which 
corresponds in practical terms to an increase of Reynolds number and/or to a decrease of the 
base pressure (see Williamson & Roshko [39] ). In the following we will concentrate on the 
phase dynamics of the Kärmän vortices away from the ends, assuming that the shedding angle 
or spanwise wave number imposed by the actual end condition is known. For this, it is useful 
to recast equation (3) in terms of modulus and phase, undoing at the same time the scalings of 
t and z with £ and introducing a convenient nondimensionalization: 

atM = M + 5ZZM - M(5zO)2 - c! M-! 5z(M25zO) - M3    , (9a) 

MatO-c25tM = cA[azzM-M(ÖzO)2] + ccpM-15z(M2azO)   , (9b) 

with A / Aref = M(t,z) exp[iO(t,z) + i(c0 - c2)t] , 

C0 = CTi/o-r  ,    Cl=\Li/\lT  ,    C2 = /j//r  ,    C(p=l+C1C2,    CA = C!-C2 

Assuming that the original A has already been made nondimensional with a suitable reference 
of    the    measured    physical    quantity,    the    reference    quantities    for    the    above 
nondimensionalization are   Aref= (ar//r)

1/2 ,   tref
=ar"1 >    Zref = (h-/ar)1/2 • 

The amplitude is thus scaled with the two-dimensional saturation amplitude (see equ. 4c), the 
time with the e-fold growth time of the 2-D instability and z with the spanwise diffusion 
length. 

Since in this paper we are only interested in the region away from the ends where M is close 
to unity, equation (9) can be further simplified. Expanding (9) for small spanwise wave 
numbers q=3zO and taking into account that 5z=0(qref) and dt=0(q2

ref) one finds 

5tO = -cA(5zO)2 + c(p5zzO + W5zO + 0(q4
ref) , (10a) 

M = 1 - (l/2)[(5zO)2 + ClazzO] + 0(q4ref) . (10b) 

From this point on we will only deal with the simplified equation (10a) which is equivalent to 
Burgers equation and in which a convective term has been added to represent a small (at most 
of order qref) spanwise flow W imposed by the end conditions. 

Oblique shedding and phase shocks 

The simplest solution of (10a) is the plane wave solution 

q = 5zO = const, with the frequency correction  5tO = -cA q2 + W q , (11) 

where the spanwise wave number is related to the shedding angle 0 by q = 27isin(0) / XQ 

with X0 the streamwise wave length that can be taken from fig. 9a of [25]. Spanwise regions 
of different shedding angle can now be connected through a phase shock that corresponds to 
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the well known shock solution of Burgers equation. Assigning the indices "1" and "2" to the 
regions behind and in front of the shock, respectively, it is given by 

q(t,z) = (qi+q2)/2 - [(qi-q2)/2] tanh[8-l(z-Ust)]   , (12) 

S = 2c(p[cA(q1-q2)]-1 , Us = cA(qi+q2)   ,   W = 0   . 

For a shock solution to exist, the shock thickness 8 has to be positive, i.e. (qrq2)>0. In other 
words, the region with larger shedding angle always "eats" into the region with the smaller 
angle. To start a shock, one of the end conditions needs to be changed in a step fashion. This 
is easily achieved with the suction tube technique of Miller & Williamson [40] where the 
amount of suction can be varied within a few Kärmän cycles. Figure 7 shows such a shock, 
initiated (before the photo was taken) by a sudden decrease of the suction at the upper edge of 
the figure. On this "strip-chart recording" the time origin is roughly 110 Kärmän wave lengths 
beyond the right hand edge of the frame and in the final state the oblique shedding with the 
larger angle extends over the entire span. The velocity Us of phase shocks has been measured 
for various initial and final angles (Monkewitz, Williamson & Miller [41] ). With model 
constants deduced from the frequency correction (11) for oblique shedding, which is 
indistinguishable from Williamson's cos(0) law [25] over all observed angles (the maximum 
angle being around 25°), the prediction (12) is in good agreement with the measurements (see 
[41]) and yields in physical variables U/U«, = 0.44 {si^Gj) + sin(02)}, with ®x and 02 the 

shedding angles behind and in front of the phase shock. 

The "reverse bow" of Kärmän vortices 

A second phenomenon that can be easily explained by the model (10a) is the small reverse 
bow often found when end conditions are adjusted for parallel shedding and first documented 
by Hammache and Gharib [42]. Their flow visualization is reproduced here as fig. 8. The 
model forbids any propagation of regions of reverse angle away from the ends and suggests 
the following most likely cause: since parallel shedding is induced by lowering the base 
pressure towards the ends, a spanwise mean flow towards both ends must be generated that 
can become significant especially if the lowering of the pressure is "overdone". Assuming 
for W the functional form (13a), one finds the exact solution (13b) of (10a) which represents a 
parabolic reverse bow of the lines of constant phase. 

W(z)= w(2z/L-l) , (13a) 

q(z) = (w/cA) (2z/L - 1) ,     5tO = 2w/(cAL) . (13b) 

For an extreme case, that unfortunately does not correspond to any of their flow visualization, 
Hammache and Gharib [42, their fig. 13] have measured this velocity at z=0.26L and z=0.74L 
to be around 3% of U«, at the y-location of the Kärmän vortices. This, together with the 
model coefficients determined from the frequency law (11) and the phase shock experiments 
yields a reverse shedding angle of around 16° at both cylinder ends which is consistent with 
the observation (private communication of M. Hammache). The frequency correction (13b) 
associated with the reverse bow on large aspect ratio cylinders (of the order of 100) is not 
measurable as it is of the order of 10"4 in terms of Strouhal number. 
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Phase expansions 

For (qi-q2)<0 equation (10a) does not admit shock solutions. The question is therefore how an 
oblique shedding pattern can relax back to parallel shedding if the end conditions are 
readjusted. In analogy to gas dynamics (Burgers equation) the answer is clearly via a phase 
expansion fan. An experiment has been conceived [41] where initially one end condition at, 
say z=L is set for parallel shedding, while the second is set for some oblique shedding angle. 
As a consequence, the oblique shedding, having spread by a phase shock, initially occupies 
the entire span. At t=0 the second end condition at z=0 is also set for parallel shedding in an 
abrupt manner. As predicted by the model, this starts a phase expansion fan moving across 
the span and ultimately leads to parallel shedding everywhere. This process is illustrated by 
the flow visualization of fig. 9. 

A preliminary quantitative test of the model has been performed on such phase expansions. 
The coefficients of the model have thereby been chosen solely on the basis of experiments 
with oblique shedding and phase shocks. At R=120 the resulting coefficients are in 
dimensional form cA u*r /v* = 44 , u*r /(<y*r D*2) = 1.1 and c<p /cA « 1 . Equation (10a) 
with W=0 has been integrated with these coefficients and half a "chevron" (see [21]) between 
z=0 and L as initial condition. Fortunately it turns out that the results are quite insensitive to 
the value of Cq, /cA which could not be determined accurately. The preliminary results are 
shown on fig. 10 in terms of the time history of the spanwise wave number q(t) at the fixed 
spanwise position z=L/4, normalized by the initial spanwise wave number q0. This 
comparison reveals that the early portion of the phase expansions is very well predicted by the 
model, while the computed tails consistently fall off too slowly. The reasons for this 
sytematic deviation is still under investigation. 

5. CONCLUSIONS 

It has been shown, that the amplitude equations presented in this paper allow at least a 
qualitative understanding of many aspects of the wake dynamics, in particular of the 
evolution of shedding patterns. If properly calibrated by experiments, i.e. with experimentally 
determined coefficients, the models even provide a consistent quantitative description of 
many shedding phenomena that could otherwise only be obtained numerically at considerable 
expense. Therefore we believe that this approach provides a valuable tool for investigating 
the parametric dependence of known shedding phenomena as well as for conceiving new 
experiments. One such experiment stimulated by the study of the G-L equation (3) with 
periodic boundary conditions has been the investigation of the ring wake by Leweke et al. 
[43]. An area where considerable progress seems possible through the analysis of amplitude 
equations is the shedding from cylinders with slowly varying diameter, such as slender cones. 
So far, the model defined by equation (3) with a suitably varying a(z) has been integrated 
numerically by Noack et al. [38] and Papangelou [44] to show qualitatively the formation of 
cells of different shedding frequency along the span. However, very little is known yet about 
the scaling properties of such cells. Another promising area with a potentially wide range of 
application is the elucidation of three-dimensional effects induced by local feedback [36, 37]. 
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NOMENCLATURE 
All quantities are non-dimensional with D* and the diffusion time D*2/v* 

A, B, C complex amplitude functions 
cb base bleed coefficient 
D*  [m] cylinder diameter 
f * [sec1] frequency 
k stream wise wave number 
L cylinder length 
L* [m] dimensional cylinder length 
/ complex coeff. of nonlinear term in the G-Lequ. 
Q* [mVsec] volume flow rate of base bleed 
q spanwise wave number 
R Reynolds number 
S Strouhal number 
t, T, T time (with different scalings) 
U, u velocity vector 
Uc centerline velocity 
Uoo freestream velocity 
U*oo [m/sec] dimensional freestream velocity 
W mean spanwise velocity 
x, £, streamwise coordinate (with different scalings) 
y cross-stream coordinate 
z, Z spanwise coordinate (with different scalings) 
A arbitrary disturbance quantity 
z=l/K small nonparallelism parameter 
O [rad] phase of complex amplitude function A 
A mean flow evolution length 
X typical instability wave length 
u = p:r + i [i[ complex coeff. of diffusion in the G-L equ. 
u*r [m2/sec] dimensional real part of the coeff. of diffusion in the G-L equ. 
v* [m2/sec] kinematic viscosity 
0 [rad] vortex shedding angle 
a = ar + i a} complex growth rate in the G-L equ. 
a*r [sec-1] dimensional real part of the growth rate in the G-L equ. 
co radian frequency 
COQ global mode frequency 
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FIGURE CAPTIONS 

Figure 1. a) Cross section of the cylinder with base bleed of dimension D=4mm and h=2mm. b) Critical bleed 
coefficient versus R with the two asymptotes indicated by broken lines (from Schumm et al. [5]). 

Figure 2. Smoke visualization of wake transient (R=68) after switching off the base bleed. Frames are 200ms 
apart and the intersection of the light sheet with the cylinder is defined by its shadow (from Schumm et al. [5]). 

Figure 3. Time history of streamwise velocity at (x/D,y/D)=(14,l) during a transient at R=48.5 . Distance 

between tick marks is 114 ms (from Schumm [11]). 

Figure 4. Coefficients of S-L equation versus R for the circular cylinder. A, transients induced by interruption of 
base bleed; O, control of shedding by cylinder oscillations (from Schumm et al. [5]). 

Figure 5. a) Maximum saturation amplitude and its location versus R: ■, |A|sat|B|max (arb. units); O, xmax /D 
b) Collapse of global mode shapes at various R (from Goujon-Durand et al. [26], with permission). 

Figure 6. Local absolute growth rate versus x/D for a cylinder wake at R=50. 

Figure 7. Smoke visualization of phase shock for R=120 , L /D=200 (from [40, 41]). Flow is from left to right. 

Figure 8. Reverse bow at R=100 (from Hammache & Gharib [42], with permission). Flow from top to bottom. 

Figure 9. Smoke visualisation of phase expansion at R=120 (from [40, 41]). Flow is from left to right. The end 
condition at the lower edge is permanently set for parallel shedding while the one at the upper egde has been 
changed to parallel shedding at t=0 corresponding to a point about 10 Kärmän wave lenths beyond the right hand 
edge of the frame. 

Figure 10. Time history of normalized spanwise wave number at z=L/4 during a phase expansion initiated at 
t=0, with initial shedding angles of 10° and 20° and R=120 (D= 1.08mm, L/D=200). The model computations 

are shown as broken lines. 



(a) U 00 

-o 

(b) 

cb,crit 

-.2 

-.4 

-I 1 1 r- 

Z7T-^~ Ö-O--0--0— O O- 
o o o   o     o 

o° 
o 
o 

io 

lO 
_J I I l_ 

25        45 65 85        105       125       145       165 

R 

TTtf l 



17 

—,.- "At 

esssK-rt 

F^.z 



Ar 

~**-**~w^^ iWS 

V,a. £ 



GrD
2 

a-p2 

*r      -, 

T^.t 



Zo 

0.01 

(R-Rcr)/Rc 

X 
cd 
P 

m 

m 

G R=1.10Rcr 

o R=1.16Rcr 

O R=1.21Rcr 

A R=1.26R, 

B R= 1.31 R, 

♦ R=1.58R 

R=1.84R 

cr 

cr 

cr 

cr 

max 

"^a-5" 



n 

x/D 

%6 



II 

T^.l 



26 

(\ 



^^^St^^pti ^'iÄ-WS^i.    -   v* _^^A£;£W>~-,^ ti i. a> t   ~ 

^ 
^, 



is 

1.2 "i    i    i    i    I—i—i—i—r "i   i   1   i    i   i—i—|—i—i—r "i—i—i—i—i—r 

-0.2 I—'—i—i—i—I—i—i—LL_I I i i i   i   1   i   i   i   i   I   i   i   i   i 

0 0.5 1 
_i i i i i   i   < 

1.5 2 

Time (sec) 

2.5 3.5 

U«.  10 



26 

III. THE DEVELOPMENT AND BREAKDOWN OF VORTICES 
ON A DELTA WING WITH 70° SWEEP AND FLAPS 

Work performed by Wei Jun Fu 

Abstract 

Over a delta wing with 70 degree sweep angle, leading edge vortices form with increasing angle of 

attack. When the angle of attack a is smaller than 28 degree, the vortices are found to be stationary, due 

to the balance between the vorticity surface flux and the axial convection along the swept leading edge. 

When the angle of attack increases above 28 degree, the vortex breaks down. In this report, we 

investigate the development and breakdown of the leading edge vortices on a 70 degree swept delta 

wing with flaps. The flow visualization results show that the process of vortex formation and 

breakdown is highly sensitive to angle of attack a and flap angle <|>. When the trailing edge flap is 

turned upwards (positive deflection angle), the vortex breakdown position moves forward with 

increasing flap angle. When the flap is deflected toward the pressure side of the wing (negative 

deflection angle), the vortex breakdown moves backward. Two flaps (trailing edge flap split at the 

centerline) appear to act independently on the two vortices, i.e. one vortex can be made to move 

forward and the other one backward if one of the flaps is deflected upward and the other one 

downward. Experiments with an external disturbance have also been performed at a=30° and §=+5°. 

We found in this case that the vortex breaks down immediately if an object touches the core of vortex. 

When the disturbance is removed, the vortex breakdown structure return promptly to its unperturbed 

position. 

1. Introduction 

Flow separation from the leading edge of delta wing gives rise to a spiral-like vortex sheet on the upper 

surface of the delta wing. Recent research [4-7] show details of the primary and secondary vortex 

system adjacent to the leading edge (see Fig.l). The consequence of the vortex pattern is to 

significantly increase the lift [1-3]. This attracts considerable interest because it can dramatically change 

the slope of the lift [8-10] (Fig.2). Some modern aircraft have already used delta wing designs to 

operate at high angle of attack. However, when the angle of attack is above some critical value, vortex 

breakdown may occur on the delta wing affecting the stability of the aircraft. Thus, the vortex 

breakdown phenomenon has become one tof today's active research topics. 

Since the vortex breakdown location and its accompanying change in velocities cannot be measured 

with a probe without perturbing the natural flow field, flow visualization techniques are often used. By 
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injecting smoke into the flow upstream of the delta wing, the streamline with the vortex structure 

emanating from the leading edge can be easily seen. 

In this report, the experimental setup is briefly described in section 2 and the salient features of vortex 

formation over the delta wing with sweep angle of 70 degree are shown in section 3. In section 4, we 

focus on the vortex breakdown. We investigate the influence of trailing edge flaps on the vortex 

breakdown in section 5. Finally, we study the influence of different flap deflection angles and of and 

external disturbances on the position of vortex breakdown in sections 6 and 7. 

2. Experimental facility 

The experimental setup is shown in fig. 3. The facility consisted of a wind tunnel with a delta wing, 

support system, laser, optical system, video recording system and smoke generator. The test section of 

the wind tunnel has a 1.2 meter by 1.0 meter rectangular cross section with a length of 1.5 meters. The 

maximum speed is 25 m/s. In this study, all the experiments were performed at 10 m/s. Fig. 4 shows 

the delta wing used in this study. It has a 70 degree sweep angle and a 26.6 degree sharp leading edge. 

The chord length L is 704mm and the wing span is 510mm. Two different length trailing edge flaps 

were used in the experiment. Their length 1 are 100mm and 170 mm, which make the ratio 1 / L equal to 

one seventh and one quarter respectively. 

3. Distinguishing features of vortex formation 

When the angle of attack a changes from 0 to 28 degree at a free stream velocity v=10 m/s, the vortex 

forms gradually and develops over the delta wing. In the beginning, the vortex does not separate until 

the angle of attack is greater than 4 degrees and remains attached to the top surface of the delta wing. 

When angle of attack is between 4 and 5 degree, the vortex begins to separate from the leading edge on 

the upper surface of the delta wing (see fig 5). Until the angle of attack reaches 28 degrees in fig. 6, a 

pair of steady separated vortices appear above the surface of the delta wing. The vorticity is generated at 

the leading edges and is wrapped up in the vortices. At the same time, a local shear layer begins to form 

(Didden and Ho 1986). In the experiment, we can see how the oncoming fluid first attaches to the 

lower surface near the leading edge of the delta wing. Due to the favorable pressure gradient in the 

direction towards the edge, the flow stays attached to the bevel of the leading edge and only separates 

from the sharp L.E. to form a concentrated vortex. The vorticity in the shear layer is wrapped up in 

spiral fashion into large bound vortical structures that are convected downstream with the velocity of 

the free stream. The vorticity generated at the leading edge is carried downstream by the velocity 

component along the inclined leading edges and when the vorticity supplied from the L.E. balances the 

vorticity convected away, the separation vortices become stationary [11-12]. The two vortices above 

the suction surface of the wing have a conical symmetry with respect to the apex of the lifting surface. 



28 

The low pressure associated with the vortices induces additional lift on the wing, often called nonlinear 

vortex lift, which is particularly important at large angle of attack [13]. 

4. Survey of vortex breakdown research 

Now, let us look at the results for angles of attack increasing from 28 to 55 degree. When the angle of 

attack is greater than 28 degree vortex breakdown will first appear on the delta wing near the trailing 

edge and the vortex breakdown location "B" moves forward with increasing angle of attack (fig.7 & 8). 

With further increasing angle of attack, the velocity on the suction side decreases and the downstream 

convection of vorticity is reduced thus changing the balance of vorticity. Eventually the leading edge 

vortices can not be held in place and shed. At intermediate angles of attack, a adverse streamwise 

pressure gradient builds up as a increases and at angles of attack beyond 28 degrees the vortices 

suddenly expand in size accompanied by a decrease in axial velocity, i.e. they burst. This is often 

accompanied by transition where the organized vortex structure breaks down into turbulence. For a 

equal to 50 degrees, point "B" has moved close to the apex of the delta wing. This picture is consistent 

with Parmenter's study [16] who applied suction near the trailing edge, thereby effectively lowering the 

adverse pressure gradient. By lowering the adverse gradient, the tendency to vortex breakdown is 

reduced just as in the case of boundary layer separation [10]. The location of the suction probe and the 

suction rate determine the effect of suction on vortex breakdown. Parmenter determined that the 

location of the suction device must be located downstream of the natural vortex breakdown point (see 

also the theoretical studies by Benjamin [17-18]). In figure 9 the effect of breakdown on the 

visualization of vortex sections is shown. The sudden increase of the the central smoke-free inner core 

is striking and permits an accurate visual determination of the breakdown location. 

5. Vortex breakdown on a delta wing with trailing edge flap 

For this experiment, we use two angles of attack 28.5 and 30 degree with different flap deflection 

angles equal to 35, 10, 5, 0, -5 and -10 degrees to investigate the influence of the flap on the delta 

vortices. For example, for an angle of attack of 28 degrees and a free stream velocity v of 10 m/s, the 

results demonstrate that the position of vortex breakdown moves from the trailing edge to the apex in 

fig 10. When the flap deflection angle increases from 0 to 30 degree, the core line on the top of the delta 

wing is gradually lifted with increasing flap deflection angle. Conversely, the position of vortex 

breakdown moves downstream and off the upper surface of delta wing, when the flap deflection angle 

is increased in the negative direction. We also oscillated the flap at different frequencies and amplitudes 

(45°to -20° or 0° to 30°). The results show that the position of vortex breakdown moves forward and 

backward corresponding to the flap up and down phase of oscillation. The phase of the vortex 

breakdown motion is very well synchronized with the flap motion at low frequency and confirms the 
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strong sensitivity of the breakdown to streamwise pressure gradient. If the flap is deflected upward, the 

local pressure gradient changes on the back of upper surface of the delta wing. The increased adverse 

pressure gradient makes the position of vortex breakdown move forward and conversely, when the flap 

is deflected downward, the local pressure gradient is reduced and causes the position of breakdown to 

move back. This is illustrated by figure 12 which shows wall streamlines on the top side of the delta 

wing without and with flap. It is noted that breakdown is associated with a "dislocation" (an inward 

bow) of the otherwise perfectly straight separation line thus providing another means of nonintrusively 

locating the breakdown position. 

6. Effect of different flap angles on left & right half wing 

The influence of different flap deflection angles, §L and <J)R, on the left and right half of the wing 

trailing edge was investigated. In this experiment, four combinations of different angles are used which 

are shown in Fig 11. The results of experiment show that, when <J)L > 0 the position of breakdown of 

the left vortex moves forward. When ())R < 0, the position of breakdown of the right vortex moves 

backward. At the same time, the left core and right core lines independently lift from and approach the 

surface of the delta wing. 

7. External disturbance of vortex 

For a equal to 30 degrees and a flap deflection angle of 5 degrees, the vortex was disturbed from the 

outside by poking a thin steel thread (0=0.5 mm) or a rod (0=2 mm) into the vortex core. Fig. 13 

shows schematically the influence on the breakdown location. When the steel thread is outside of the 

vortex core, the breakdown structure doesn't show any significant change, but if the steel rod touches 

the vortex core upstream of the unperturbed breakdown point, vortex breakdown immediately occurs at 

the rod location. When the disturbance is removed, the vortex promptly returns to its usual position. 

Each vortex is found to react independently without affecting the other vortex. These results show that 

when an object directly disturbs the vortex core by introducing a local stagnation region, vortex 

breakdown immediately occurs at the disturbance point. As the vortex core contains high momentum 

fluid with high velocity and low pressure (see the figure by Fink and Taylor, 1967, reproduced as fig. 

14), the observed reaction to the insertion of a rod is as expected. 

8. Conclusions 

Flow visualization has documented the vortex formation process, the change of breakdown position of 

the separation vortex when the angle of attack was increased beyond 28.5 degrees and the final 

disappearance of the steady delta vortices. Vortex breakdown position on the delta wing has been found 

to move upstream or downstream when the flap was deflected up or down. Different flap deflection 
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angles both left and right allowed to move the vortex breakdown position of each vortex independently 

in different directions and has demonstrated that the burst position is extremely sensitive to angle of 

attack and flap deflection angle. Flow visualization also revealed that when a rather thin solid object 

directly disturbs the core of the vortex, it immediately bursts at the disturbance position. 
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Fig. 5 Visualization of the vortex formation stage at small angles of attack, 
(a) a=2°; (b) a=3°; (c) a=4°; (d) a=5°. 
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Fig. 6 Visualization of fully formed delta vortex, (a) section with a=10°; 
(b) section with a=20°; (c) two consecutive sections with a=25°; (d) cut 
along the core with a=25°. 
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Fig. 7 Laser cuts through the vortex core with breakdown structure, (a) a=32°; 
(b) a=40°. 
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Fig. 8 Change of vortex breakdown position x/L with angle of attack. Core 
centerlines and breakdown structures are shown schematically on the right 
of the wing 
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(a) 

(b) 

Fig. 9 Cross sections of vortex around the breakdown location, (a) definition of 
section numbers on a streamwise cut. (b) sections 1-6 showing the rapid 
increase of the diameter of the smoke-free "bubble." 
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Fig. 12 Wall streamlines on top surface of delta wing at 30° angle of attack, (a) no 
flap, (b) flap at +10° ; vortex breakdown has moved upstream and causes a 
clear "dislocation" of the separation line. 
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fig. 13 Effect of additional external disturbance on vortex breakdown location, 
a = 30°, flap angle 4> = +5°. 
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IV. LINEAR CONVECTIVE AND ABSOLUTE INSTABILITY OF 
IDEALIZED COLUMNAR VORTICES 

work performed by M. Z. Pesenson 

The cores of columnar vortices exhibit, under some conditions, a rapid change to a rather different 

flow state. This phenomenon is called vorlex breakdown or vortex bursting, as the core appears to 

burst or increase its size in a distance of order R (R being the core diameter) [1]. The possibility of 

breakdown is a remarkable feature of the behavior of vortex cores. Since Peckhman & Atkinson 

[2] drew attention to it in flow over wings with highly swept leading edges at large angles of 

incidence, the phenomennn has been studied intensiveely both experimentally and theoretically [3- 

7]. 

The center of a leading-edge vortex is, for moderate angles of attack, located on the order of a core 

diameter above the wing surface, where the core diameter may not be negligibly small compared to 

the local semispan of the wing. During vortex breakdown the core diameter increases substantially, 

leading generally to unsteady loading of the delta wing as the breakdown location is very sensitive 

to small disturbances of flight conditions [8]. The phenomenon of vortex breakdown has also 

favorable effects in combustion chambers; where it is used as "flameholder," in tornado funnels, 

etc.. The bursting has recently also been observed experimentally [9] in concentrated vortex 

filaments within a turbulent flow and may therefore be an agent in the generation of the small scales 

in high Reynolds number turbulence. 

Despite numerous analytic and experimenlal attempts, which are summarized in many reviews, the 

explanation of the mechanism giving rise to the vortex breakdown has remained a source of 

controversy. In this study we report a new approach to the vortex stability problem which 

illuminates its absolute versus convective instability characteristics [10]. It allows us to interpret 

experimental observations of oscillations in the wake of vortex breakdown structures and leads, at 

the same time, to a complex group velocity criterion for the breakdown of vortex flow. 

Most of the theoretical approaches to the vortex breakdown problem fall into the following three 

classes: 

• Theories focussing on the deceleration of the axial core flow, leading to a stagnation point on 

the axis [11]; 

• The concept of critical state [12]; 

• Hydrodynamic instability analyses [13,14]. 

An important point was made by Saffman [1] who pointed out that there is a close connection 

between vortex breakdown and the existence and uniqueness of solutions to the steady 

incompressible Euler equations. However, the connection between the first class of theories and 
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Saffman's results on the one hand and vortex breakdown of spatially and temporally evolving 

vortices is not yet clear. We also note that the critical state approch is based on the behavior of the 

phase velocity (its vanishing in particular), while the group velocity for such highly dispersive 

waves as the waves on vortices appears more relevant. Finally, both the critical state approach and 

the local stability approach cannot describe the formation of the stagnation point on the axis and, 

even more importantly, do not take into account the downstream boundary conditions. This makes 

these two approaches appear at least incomplete as it is well documented experimentally that (i) the 

vortex breakdown phenomenon is very sensitive to the streamwise boundary conditions and 

application of downstream suction, for instance, eliminates a breakdown structure [5, 7]; (ii) "the 

perturbations do not move away from the location where they had been generated, and oscillations 

are localized in space" [3]. We will comment on the last observation later and just note here that 

spatial localization of disturbances do not necessarily imply nonlinear effects but can be due to 

mean flow inhomogeneity. Spectral analysis of the experimental data [19, 20] indicates that the 

wake oscillations downstream of a breakdown structure have a single dominant frequency of less 

than 10 Hz. It was also shown that, once started, the oscillations continue after the source of 

disturbances was removed [21]. 

In this investigation we adopt a description in terms of linear instability waves propagating on a 

slowly varying mean flow. First we study the stability of the "parallel" Q-vortex [14] to show how 

the concept of zero group velocity comes into play and discuss the relevance of the concept of 

global instability [16-18] to the breakdown phenomenon. The detailed analysis of the global 

stability of a spatially evolving vortex will be the subject of future work. For the present parallel 

analysis we use a spatio-temporal approach which resolves, contrary to previous analyses which 

only considered temporal or spatial instability, the question of absolute or convective instability of 

the physical system by considering its impulse response [16, 17, 22, 23]. This is strongly 

supported by the experiments of Lambourne & Bryer [24] who found that disturbances in a 

swirling flow grow both in space and time. Intuitively, absolute and convective instability can be 

defined as follows: if a perturbation at any fixed location of the flow grows without bound (in the 

context of linear theory) for large times, the flow is absolutely unstable. If, on the other hand, a 

perturbation is convected away as it grows such that at large times all disturbances decay to zero at 

any fixed location, the flow is convectively unstable. This definition depends of course on the 

frame of reference but in applications there is always a distinguished frame of reference fixed 

relative to, say, a vortex generator or the apex of a delta wing where the delta-vortex originates. 

We consider in the following a swirling flow with a mean velocity profile similar to a vortex 

trailing from a delta wing in an incompressible and inviscid fluid. In cylindrical coordinates (r, e, z) 

it is described by the velocity vector U=(0, V(r), W(r)) with the axial velocity W(r) and swirl 

velocity V(r) given in dimensionless form by 

(1)       W(r) = W0 + Wiexp(- r*2);      V(r) = q [l-exp(-r*2)] / r* . 
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Here r* is the radial distance normalized with the characteristic radius of the vortex core. A normal 

mode perturbation 

(2) (u\ v', w') = [u(r), v(r), w(r)] exp[i(kz - n6 - cot)] 

is superimposed on the mean flow. It is governed by the Howard-Gupta equation 

(3)        DSD*u - [1 + a/y + b/y2]u = 0 , 

where D = d/dr,    D* = D + 1/r, 

(4a, b) S = r2/(n2 + k2r2),   y = kW(r) - nV(r)/r - co , 

(4c) a(r) = rD[(n2 + k2r2)-* (krD*V + nDW)], 

(4d) b(r) = -2kV(r) S [krD*V + nDW] . 

The boundary conditions are: 

(5) u(0) = 0 if n^O and Du(0) = 0 if n=0; u —> 0 as r —> °° . 

For large r the equation (3) reduces to 

(6) D(SD*u) - u = O , 

which has the solution (Lessen et al. [14]) 

(7a) u(r) = C D[Kn(kr)] . 

The asymptotic behavior of (7) was used to implement the boundary condition at a finite large r=R, 

varying between 4 and 6 in our calculations, in the form 

(7b) Du/u (r=R) = D2Kn(kR)/DKn(kR). 

Equation (3) can now be written in the form 

(8) d2u/dr2 +(1/r) P(r) du/dr + [(1/r2) Q(r) + f(r)]u = 0 

where 

P(r) = (3n2 + k2r2)(n2 + k2r2)-! ,   Q(r) = 2n/(n2 + k2r2) - n2 - k2r2 -1 , 

f(r) = -a/(Sy) - b/(Sy2). 

Because both k and co are complex, we do not have to worry about zeros of y. It allows us to look 

for a solution in the form of a Frobenius series near the regular singularity at r=0. By expanding 

P(r), Q(r) and f(r) in power series one obtains a solution of the following form 

(9) u = r^"1 (ao + a2r
2 + ...). 
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Starting with this expansion at r=0.01, the solution of (8) is advanced towards r=R by numerical 

integration and then matched to the known asymptotic solution (7b). The shooting method with a 

globally convergent multidimensional Newton-Raphson scheme [15] was used to find the 

eigenvalues. The code was tested by comparing with known eigenvalues for real k [14]. For the 

calculations the following parameters were chosen to match the experiments of Garg & Leibovich 

[19], noting that q is different from [19] because we use a different profile. 

(19) W0 =18.0,   Wi = -13.0,   q =-18.828. 

These parameters correspond to a distance 3.8 cm after the breakdown point (stagnation point). 

The calculations yield a saddle point of co(k) in the complex k-plane at k=0.823+0.372i with a 

complex frequency co=2.593+0.427i. Such a point with positive coi, together with the pinching 

requirement verified on fig. 1, indicates absolute instability. 

This confirms the hypothesis that the oscillations developing on a breakdown structure are likely to 

be self-excited. Since we have assumed a mean flow that mimicks breakdown, our analysis can 

however not predict the onset of breakdown. Starting from the study of Tsai & Widnall [25] who 

argue that the observed disturbance buildup at the critical section of a divergent vortex apparatus 

should correspond to trapping of a wave with zero group velocity rather than phase velocity as in 

Benjamin and other recent criteria [26, 27], the following procedure is proposed for the future. The 

next step is clearly an analysis of a slowly varying mean flow, in a globally unstable case, an 

instability wave can move upstream from the turning point region of the slowly diverging problem 

[18] and the conceptual difficulties with a trapped wave as in [25] do not occur. At the same time, 

the global analysis [16-18, 28] can take downstream (and upstream) boundary conditions into 

account in a natural way. 
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Fig. 1  Saddle- and pinchpoint in the complex k-plane for n=-l mode. 


